

AZIENDA CON SISTEMA DI GESTIONE QUALITÀ CERTIFICATO DA DNV GL = ISO 9001 =

Introducing & GeneSafe

The first non-invasive prenatal test that screens for single-gene disorders.

GeneSafeTM: Summary

Building on its long history of genetic innovation, Genoma Group introduces $GeneSafe^{TM}$, the first non-invasive prenatal test that screens for both **de novo** and **inherited single-gene disorders**.

Current non-invasive prenatal tests screen for aneuploidies and microdeletions. **PrenatalSafe® Karyo** also screens for rare aneuploidies and segmental chromosome imbalances (gains and losses) in every chromosome in the fetal genome, providing karyotype-level insight.

GeneSafeTM goes further by screening fetal DNA for pathogenic (disease-causing) and likely pathogenic mutations associated with selected single gene conditions.

GeneSafeTM works as a complementary screen to traditional NIPT, allowing a more complete picture of the risk of a pregnancy being affected by a genetic disorder.

GeneSafeTM detects mutations in **4 genes** causing **5 common inherited genetic disorders** and *de novo* mutations in **25 genes** causing **44 different** *de novo* **genetic disease**.

GeneSafeTM allows for the detection of mutations that cause clinically significant and life-altering genetic disorders, such as **Cystic Fibrosis**, **Thalassemia-Beta**, **Sickle cell anemia**, **Deafness**, **Noonan spectrum disorders**, **Cornelia de Lange syndrome**, and **Osteogenesis imperfecta**.

The risk of having a child with single-gene disorders such as **Achondroplasia** and **Crouzon** syndrome increases with advanced paternal age. GeneSafeTM is now the first non-invasive prenatal screen to detect disorders with an increased prevalence linked to advanced paternal age.

GeneSafeTM: the evolution of NIPT

 $\int GeneSafe$ is the first non-invasive prenatal test (NIPT) that screens multiple genes in cell-free fetal DNA (cfDNA) to assess severe genetic disorders in the fetus, simply using a maternal blood sample.

GeneSafe[®] is a complement to Genoma's market-leading **PrenatalSafe[®]** non-invasive prenatal test, which screens for common aneuploidies, such as trisomy 21 (Down syndrome), trisomy 18, and trisomy 13, or **PrenatalSafe[®]** Karyo, that also screens for rare aneuploidies segmental chromosome imbalances (gains and losses) in every chromosome in the fetal genome.

 $\sqrt[4]{GeneSafe}$ screens for several clinically significant and life-altering genetic disorders that are not screened for with current NIPT technology, allowing a more complete picture of the risk of a pregnancy being affected by a genetic disorder.

GeneSafe[™] facilitates early diagnosis for single-gene disorders

GeneSafe involves 3 different levels of screening:

Eurofins Genoma Group S.r.I a socio unico

Sede legale 00138 Roma - Via di Castel Giubileo, 11 C.F. e P. Iva: 05402921000 REA: 883.955 Iscr. Reg. Impr. 369761/1997 Laboratori e Studi Medici Roma 00138 Roma - Via di Castel Giubileo, 11 Tel. +39 06 881 1270 - Fax +39 06 6449 2025 Web: www.laboratoriogenoma.eu E-mail: info@laboratoriogenoma.eu Laboratori e Studi Medici Milano 20161 Milano - Affori Centre, Via Enrico Cialdini, 16 Tel. : + 39 02 3929 7626 - Fax: + 39 02 3929 76261 Web: www.genomamilano.it E-mail info@genomamilano.it Pag. 1 of 7

GeneSafe DE X0VO screens for 44 severe genetic disorders due to *de novo* mutations (a gene mutation that is not inherited) in 25 genes that cause skeletal dysplasia, congenital heart defects¹⁻³, multiple congenital malformation syndromes^{4,5}, neurodevelopmental disorders, such as autism^{6,7}, epilepsy⁸, intellectual disability^{9,10}, and sporadic cases of various rare dominant Mendelian disorders, such as Schinzel-Giedion syndrome¹², and Bohring-Opitz syndrome¹³. The rate of de novo variants has been shown to increase as paternal age advances¹⁴. The 44 different disorders screened by this innovative test often occur in the absence of a family history of the condition.

The conditions screened meet at least one of the following criteria:

- Cause cognitive disability
- Require surgical or medical intervention
- Affect quality of life

The genetic disorders screened by GeneSafe DE NOVO are listed in Table 1.

Syndromic Disorders	Gene	Noonan Spectrum Disorders	Gene	
Alagille syndrome	JAG1	Juvenile myelomonocytic leukemia (JMML)		
CHARGE syndrome	CHD7	Noonan syndrome 5/LEOPARD syndrome 2		
Cornelia de Lange syndrome 5	HDAC8	Noonan syndrome 8	RIT1	
Comena de Lange syndrome 5	HDAC8	Noonan syndrome-like disorder with loose	KIII	
Cornelia de Lange syndrome 1	NIPBL	anagenhair	SHOC2	
Rett syndrome	MECP2	Noonan syndrome 4	SOS1	
Sotos syndrome 1	NSD1	Skeletal Disorders		
Bohring-Opitz syndrome	ASXL1	Achondrogenesis, type II or hypochondrogenesis	COL2A1	
Schinzel-Giedion syndrome	SETBP1	Achondroplasia		
Holoprosencephaly	SIX3	CATSHL syndrome	-	
Craniosynostosis Syndromes		Crouzon syndrome with acanthosis nigricans		
Antley-Bixler syndrome without genital anomalies or disordered steroidogenesis		Hypochondroplasia	FGFR3	
Apert syndrome	-	Muenke syndrome		
Crouzon syndrome		Thanatophoric dysplasia, type I		
Jackson-Weiss syndrome	- FGFR2	Thanatophoric dysplasia, type II		
Pfeiffer syndrome type 1		Ehlers-Danlos syndrome, classic		
Pfeiffer syndrome type 2		Ehlers-Danlos syndrome, type VIIA		
Pfeiffer syndrome type 3	-	Osteogenesis imperfecta, type I		
Noonan Spectrum Disorders		Osteogenesis imperfecta, type II	COL1A1	
Cardiofaciocutaneous syndrome 1	BRAF	Osteogenesis imperfecta, type III		
Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia (NSLL)	CBL	Osteogenesis imperfecta, type IV		
Noonan syndrome/cancers	KRAS	Ehlers-Danlos syndrome, cardiac valvular form		
Cardiofaciocutaneous syndrome 3	MAP2K1	Ehlers-Danlos syndrome, type VIIB		
Cardiofaciocutaneous syndrome 4	MAP2K2	Osteogenesis imperfecta, type II	COL1A2	
Noonan syndrome 6/cancers	NRAS	Osteogenesis imperfecta, type III		
Noonan syndrome 1/ LEOPARD syndrome/cancers	PTPN11	Osteogenesis imperfecta, type IV		

Table 1: Genetic disorders Screened with & GeneSafe DE NOVO

Eurofins Genoma Group S.r.l a socio unico

Sede legale 00138 Roma - Via di Castel Giubileo, 11 C.F. e P. Iva: 05402921000 REA: 883.955 Iscr. Reg. Impr. 369761/1997 Laboratori e Studi Medici Roma 00138 Roma - Via di Castel Giubileo, 11 Tel. +39 06 881 1270 - Fax +39 06 6449 2025 Web: www.laboratoriogenoma.eu E-mail: info@laboratoriogenoma.eu

Laboratori e Studi Medici Milano 20161 Milano - Affori Centre, Via Enrico Cialdini, 16 Tel. : + 39 02 3929 7626 - Fax: + 39 02 3929 76261 Web: www.genomamilano.it E-mail info@genomamilano.it

GeneSafe INUTRITED Screens for 5 common inherited recessive genetic disorders, such as Cystic Fibrosis, Thalassemia-Beta, Sickle cell anemia, Deafness autosomal recessive type 1A, Deafness autosomal recessive type 1B.

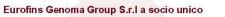
The genetic disorders screened by GeneSafe INITED are listed in Table 2.

Table 2: Genetic disorders Screened with & GeneSafe"

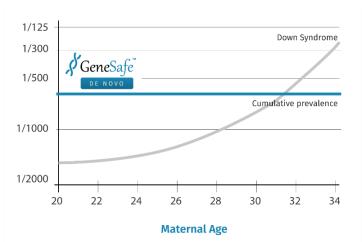
Genetic Disorder	Gene
 Cystic Fibrosis 	CFTR
Deafness autosomal recessive type 1A	CX26 (GJB2)
 Deafness autosomal recessive type 1B 	CX30 (GJB6)
 Thalassemia-Beta 	HBB
 Sickle cell anemia 	HBB

GeneSafe COMPLETE screens for both **inherited** and *de novo* single-gene disorders and represents a combination of the tests GeneSafe (MILERITED and GeneSafe (DE NOVO), providing a more complete picture of the pregnancy risk.

GeneSafe DE XOVO can identify conditions that may have otherwise gone undetected until after birth


Many disorders screened with GeneSafe DE XOVO are not typically associated with abnormal prenatal ultrasound findings (especially in the first trimester), or may not be evident until late second/ third trimester, when confirmatory invasive testing can pose a risk of preterm birth, or after delivery. Furthermore, family history is not a good indicator of risk for these conditions, which are commonly caused by *de novo* (not inherited) mutations.

This is a paradigm shift in prenatal screening. This technology screens for new mutations that are common and cannot be detected by standard carrier screening, as these mutations are not present on


the parents. In addition, genetic disorders screened by A^{GeneSafe} are not detectable with current NIPT technology.

GeneSafeTM screens for *de novo* conditions with a combined incidence of 1 in 600

Although the occurrence of each disorder is relatively rare, the cumulative rate of occurrence of these conditions (~1 in 600 or ~1 in 300, for mutations causing development disorders¹⁵) is similar to that of Down Syndrome. Knowing whether or not a fetus has one of these significant, and often devastating, genetic disorders can allow for healthcare providers and families to form a plan of care including, but not limited to, genetic counseling, specialist referrals. confirmatory studies, and delivery care. The difference in detecting a

Sede legale 00138 Roma - Via di Castel Giubileo, 11 C.F. e P. Iva: 05402921000 REA: 883.955 Iscr. Reg. Impr. 369761/1997 Laboratori e Studi Medici Roma 00138 Roma - Via di Castel Giubileo, 11 Tel. +39 06 881 1270 - Fax +39 06 6449 2025 Web: www.laboratoriogenoma.eu E-mail: info@laboratoriogenoma.eu

Laboratori e Studi Medici Milano

Web: www.genomamilano.it

E-mail info@genomamilano.it

20161 Milano - Affori Centre Via Enrico Cialdini 16

Tel.: + 39 02 3929 7626 - Fax: + 39 02 3929 76261

Pag. 3 of 7

CHIAMATA <u>GRATUITA</u> NUMEROVERDE 800-501651

significant genetic disorder in the first/second trimester versus late in pregnancy, or in the neonatal period, can be of immeasurable benefit to healthcare providers and families.

Screening for single-gene disorders early in pregnancy can be extremely helpful and is an important next step in the ability to screen for fetuses with major anatomic abnormalities and chromosome imbalances. As just one example, prenatal screening with confirmatory diagnostic testing for osteogenesis imperfecta (OI) can result in reduced bone fractures through adjusted delivery and postnatal management.

GeneSafe DE NOVO screens for genetic disorders associated with advanced paternal age

While traditional NIPT screens for conditions typically associated with advanced maternal age (e.g.

Down Syndrome), $\sqrt[4]{GeneSafe}$ screens also for genetic disorders that are associated with advanced paternal age (men that are >40 years old)¹⁴, ensuring a more comprehensive screen for couple of advanced age.

Disorders associated with advanced paternal age typically are caused by errors (mutations) in DNA arising during spermatogenesis. As a man ages, the chance for these errors to occur substantially increases.

Several genetic diseases show a stronger association advanced paternal age. For example, the risk for some genetic disorders, such as Achondroplasia, is up to 8 times higher in fathers with advanced paternal age. Other genetic diseases associated with advanced paternal age are Pfeiffer syndrome, Crouzen syndrome, Apert syndrome, thanatophoric dysplasia and Osteogenesis Imperfecta.

GeneSafe is the next step in the evolution of screening for genetic disorders during pregnancy, providing information that can affect medical decisions, preparation, and peace of mind for families

and physicians. Simply put, *GeneSafe* is the most comprehensive single gene cell-free fetal DNA screen available.

GeneSafeTM: Indication for testing

^{CeneSafe} is intended for patients who meet any of the following criteria:

- Advanced paternal age (men that are >40 years old)
- Abnormal ultrasound finding(s) suggestive of monogenic disorder
- patients wishing to avoid an invasive diagnostic procedure
- patients at risk for genetic conditions screened

The test is suitable for:

• both single and twin pregnancies.

• patients whose pregnancies have been achieved by IVF techniques, including pregnancies with egg donation or surrogacy.

The Testing Process

GeneSafe test screens for pathogenic and likely pathogenic mutations associated with selected single gene conditions, by analyzing circulating cell-free fetal DNA from a maternal blood sample. Circulating cell-free fetal DNA is first purified from the plasma component of anti-coagulated maternal whole blood.

Through a state-of-the-art technological process, named *Next Generation Sequencing* (NGS) technique, **29 genes** are completely sequenced (exons and adjacent intronic regions, ± 5 nucleotides) (Table 1 and 2) at high read depth (>**500X**). The resulting genetic sequences are analysed via an

Pag. 4 of 7

Eurofins Genoma Group S.r.I a socio unico

Sede legale 00138 Roma - Via di Castel Giubileo, 11 C.F. e P.Iva: 05402921000 REA: 883.955 Iscr. Reg. Impr. 369761/1997 Laboratori e Studi Medici Roma 00138 Roma - Via di Castel Giubileo, 11 Tel. +39 06 881 1270 - Fax +39 06 6449 2025 Web: www.laboratoriogenoma.eu E-mail: info@laboratoriogenoma.eu Laboratori e Studi Medici Milano 20161 Milano - Affori Centre, Via Enrico Cialdini, 16 Tel. : + 39 02 3929 7626 - Fax : + 39 02 3929 76261 Web: www.genomamilano.it E-mail info@genomamilano.it

advanced bioinformatics analysis, to check for the presence of potential mutations in the genes under investigation.

The screen, developed by the experts at **GENOMA Group**, assesses fetal DNA for pathogenic and likely pathogenic mutations, and will not report variants of uncertain significance or benign variants.

Results of the GeneSafeTM test

"POSITIVE" – Pathogenic/Likely Pathogenic mutation(s) detected: this result shows that the test detected one or more **Pathogenic / Likely Pathogenic mutation** in one or more genes. A positive screening result mean that there is a **high risk** that the fetus has one of the disorders screened with

 \checkmark GeneSafe. A patient with a **positive** \checkmark GeneSafe test result should be referred for genetic counseling and should always be followed-up with an invasive diagnostic test for confirmation of test results, before any medical decisions are made.

Mutations detectable through the GeneSafe test may be classified under the following prognosis categories:

- Known pathogenic: clinical relevant mutations causing well-established syndromes;
- **Likely pathogenic**: variants that are likely clinical relevant and may cause well-established syndromes.

The following variants are not reported with & GeneSafe test:

- **Benign:** variants that are common or observed in the normal population without known phenotypic signs or inherited from a healthy parent;
- **Variants of uncertain clinical significance (VOUS):** findings with insufficient evidence available for unequivocal determination of clinical significance.

"NEGATIVE" – No pathogenic/likely pathogenic mutation(s) detected: this result shows the test has not detected any disease causing mutation in the targeted genes screened. Negative screening results mean that there is a **very low risk** that the fetus has one of the disorders screened with

 $\int GeneSafe$, although no guarantee may be given that the fetus is actually healthy.

Parameters used to report the genetic variations

The test analyses only the genes listed in Table 1. Only mutations classified as "**Known pathogenic**" and "**Likely pathogenic**", in accordance with the relevant scientific literature and the current classification in the ClinVar – NCBI, dbSNP – NCBI, and other NCBI resources, Human Gene Mutation Database (HGMD), updated on the date of the sample collection, will be reported.

Target Coverage

Target Coverage is the average number of sequencing reads for each nucleotide base of the gene. Variations with a read depth (i.e. number of reads) **higher than 500X** are obtained with the sequencing protocol used for this test.

Accuracy of the GeneSafeTM test

^{CeneSafe} has a combined analytical sensitivity of >99% and a combined analytical specificity of

>99% in validation studies. Given the combined high incidence of these disorders, $\cancel{GeneSafe}$ may be used to screen all singleton pregnancies after nine weeks gestation. Even though this test is very

Eurofins Genoma Group S.r.I a socio unico

Sede legale 00138 Roma - Via di Castel Giubileo, 11 C.F. e P. Iva: 05402921000 REA: 883.955 Iscr. Reg. I mpr. 369761/1997 Laboratori e Studi Medici Roma 00138 Roma - Via di Castel Giubileo, 11 Tel. +39 06 881 1270 - Fax +39 06 6449 2025 Web: www.laboratoriogenoma.eu E-mail: info@laboratoriogenoma.eu

Laboratori e Studi Medici Milano 20161 Milano - Affori Centre, Via Enrico Cialdini, 16 Tel. : + 39 02 3929 7626 - Fax : + 39 02 3929 76261 Web: www.genomamilano.it E-mail info@genomamilano.it

Pag. 5 of 7

accurate, the limitations of this analysis are to be always taken into consideration. Please read below.

Limitation of the GeneSafe[™] test

While the results of the CeneSafe prenatal test are highly accurate, discordant results may occur. Cellfree DNA (cfDNA) testing does not replace the accuracy and precision of prenatal diagnosis with CVS or amniocentesis.

GeneSafe is a screening test. This means that pregnancy decisions should not be based solely on the

results of **GeneSafe**TM. The purpose of the $A^{GeneSafe}$ test is to indicate if the fetus is at increased risk for a genetic disorder allowing for follow-up invasive prenatal studies or newborn studies.

The *GeneSafe* prenatal test does not test for all health problems. Performing this screening allows for an assessment for known pathogenic and likely pathogenic mutations in selected genes associated with selected disorders. Normal results do not eliminate the possibility that your pregnancy may have other genetic conditions, birth defects, or other complications.

^dGeneSafe⁻ does not screen for fetal chromosome, or other copy number, abnormalities commonly detected by traditional (aneuploidy) NIPT.

A "NEGATIVE – Pregnancy at Low Risk for a genetic disorder" result greatly reduces the chances that your fetus has one of the monogenic disorders screened but it cannot guarantee a healthy baby. The result of this test does not eliminate the possibility of other untested genetic disorders, birth defects, or other complications in your fetus or pregnancy.

A patient with a **positive** A geneSafe test result should be referred for genetic counseling and should always be followed-up with an invasive diagnostic test for confirmation of test results, before any medical decisions are made.

An **uninformative result** may be reported, the causes of which may include, but are not limited to, insufficient sequencing coverage, noise or artifacts, amplification or sequencing bias, or insufficient fetal fraction. The ability to report results may be impacted by maternal body mass index (BMI), maternal weight, and/or maternal systemic lupus erythematosus (SLE).

While results of this screen are highly accurate, incorrect test results or a failure to obtain test results may occur due to one or more of the following rare occurrences: biological factors such as but not limited to too low DNA from the fetus in the maternal blood sample, placental, maternal or fetal mosaicism, vanishing twin, prior maternal organ transplant, fetal demise, cancer, genetic or somatic variants that interfere with analysis, an unrecognized twin pregnancy, other circumstances beyond our control, or unforeseen problems that may arise, or other causes.

This test analyses only genetic diseases and genes listed in Tables 1 and 2. The test does not detect other genetic disorders or genes or gene regions that were not specifically targeted. The test only detects mutations in exons and adjacent intronic regions (\pm 5 nucleotides). It cannot detect deletion or duplications >20 base pair and mosaicism occurrences.

The interpretation of genetic variations is based upon the most updated knowledge available upon examination. Such interpretation may change in the future, when new scientific and medical information on the structure of the genome are acquired and may affect the evaluation of the genetic variations themselves.

The analytical sensitivity for single nucleotide variants is >99% with a test specificity at >99%. Complex mutations including small insertions, duplications, and indels might be detected at a lower sensitivity. Exonic, gene or chromosomal copy number changes are not detected by this screen.

Eurofins Genoma Group S.r.l a socio unico

00138 Roma - Via di Castel Giubileo. 11

C.F. e P.Iva: 05402921000

Iscr. Reg. Impr. 369761/1997

Sede legale

REA: 883 955

Laboratori e Studi Medici Roma 00138 Roma - Via di Castel Giubileo, 11 Tel. +39 06 881 1270 - Fax +39 06 6449 2025 Web: www.laboratoriogenoma.eu E-mail: info@laboratoriogenoma.eu Laboratori e Studi Medici Milano 20161 Milano - Affori Centre, Via Enrico Cialdini, 16 Tel. : + 39 02 3929 7626 - Fax : + 39 02 3929 76261 Web: www.genomamilano.it E-mail info@genomamilano.it

Pag. 6 of 7

 $\int GeneSafe$ should be offered in conjunction with genetic counseling, including review of family history, to help determine the most appropriate prenatal studies for any pregnant woman.

Alternatives

This non-invasive prenatal screening test is only one option for detecting pregnancies at high risk for fetal monogenic disorders. There are multiple other diagnostic options available during pregnancy. For women who want or need more conclusive information about the fetal genetic disorders, commonly used invasive diagnostic tests such as CVS or amniocentesis are available, and will genetic diseases not evaluated with this screening tests.

References

- 1. Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350:1262–6.
- 2. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498:220–3.
- 3. Sifrim A, Hitz M-P, Wilsdon A, Breckpot J, Turki SH A, Thienpont B, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48:1060–5.
- 4. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42:790–3.
- 5. Hoischen A, van Bon BWM, Rodríguez-Santiago B, Gilissen C, Vissers LELM, de Vries P, et al. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet. 2011;43:729–31.
- 6. Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.
- 7. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43:585–9.
- 8. Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–21.
- 9. de Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367:1921–9.
- 10. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380:1674–82.
- Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J: Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010, 42:790–793.
- 12. Hoischen A, van Bon BW, Gilissen C, Arts P, van Lier B, Steehouwer M, de Vries P, de Reuver R, Wieskamp N, Mortier G, Devriendt K, Amorim MZ, Revencu N, Kidd A, Barbosa M, Turner A, Smith J, Oley C, Henderson A, Hayes IM, Thompson EM, Brunner HG, de Vries BB, Veltman JA: De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 2010, 42:483–485.
- 13. Hoischen A, van Bon BW, Rodriguez-Santiago B, Gilissen C, Vissers LE, de Vries P, Janssen I, van Lier B, Hastings R, Smithson SF, Newbury-Ecob R, Kjaergaard S, Goodship J, McGowan R, Bartholdi D, Rauch A, Peippo M, Cobben JM, Wieczorek D, Gillessen-Kaesbach G, Veltman JA, Brunner HG, de Vries BB: De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet 2011, 43:729–731.
- 14. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir AA, Wong WSW et al.: Rate of de novo mutations and the importance of father's age to disease risk. Nature 2012, 488:471-475.
- 15. McRae J, et al.: Prevalence and architecture of de novo mutations in development disorders Nature 2017: 542:433-438.

Eurofins Genoma Group S.r.l a socio unico

Sede legale 00138 Roma - Via di Castel Giubileo, 11 C.F. e P. Iva: 05402921000 REA: 883.955 Iscr. Reg. Impr. 369761/1997 Laboratori e Studi Medici Roma 00138 Roma - Via di Castel Giubileo, 11 Tel. +39 06 881 1270 - Fax +39 06 6449 2025 Web: www.laboratoriogenoma.eu E-mail: info@laboratoriogenoma.eu

Laboratori e Studi Medici Milano 20161 Milano - Affori Centre, Via Enrico Cialdini, 16 Tel. : + 39 02 3929 7626 - Fax: + 39 02 3929 76261 Web: www.genomamilano.it E-mail info@genomamilano.it

